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Personalisation has become a baseline expectation
among e-commerce consumers

96% 89%

Shoppers expect to find what they need

. . Digital businesses are investing in
in 3 clicks or less

personalization

Source: Salesforce Source: Forrester

Customers feel frustrated when Increase in Millennial brand loyalty
shopping experience is impersonal when communication is personalized

Source: Segment Source: Smarter HQ



https://www.salesforce.com/content/dam/web/en_us/www/assets/pdf/salesforce-state-of-the-connected-customer-report-2019.pdf
https://www.forbes.com/sites/blakemorgan/2020/02/18/50-stats-showing-the-power-of-personalization/?sh=45616f222a94
https://www.forbes.com/sites/blakemorgan/2020/02/18/50-stats-showing-the-power-of-personalization/?sh=45616f222a94
https://www.forbes.com/sites/blakemorgan/2020/02/18/50-stats-showing-the-power-of-personalization/?sh=45616f222a94

Personalisation in e-commerce typically follows the
recommender system model

. RECOMMENDATION ENGINE




Personalisation in e-commerce typically follows the
recommender system model
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Deep learning can massively improve personalized
recommendations using the same paradigm
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Deep learning can massively improve personalized
recommendations using the same paradigm
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This paradigm, however, keeps us in our own POV,
not the consumer’s, especially at the discovery stage

New Registry Design Services Tips & ldeas Stores eCatalog Recommendations Furniture Guides

FURNITURE

0 30% OFF
NG SOFAS &

OUTDOOR BEDDING BATH RUGS & WINDOWS LIGHTING PILLOWS & DECOR

TABLETOP GIF1

OUTDOOR FURNITURE BY
TYPE

All Furniture

Lounge Furniture

Dining Furniture

Accent Tables

Furniture Cushions & Covers

Patio Umbrellas

OUTDOOR FURNITURE BY
MATERIAL

Wicker Furniture
Wood Furniture
Teak Furniture
Metal Furniture

Mixed Material Furniture

OUTDOOR ENTERTAINING

Dinnerware

Drinkware
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Outdoor Pillows

Outdoor Rugs & Doormats
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View All Collections
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The Eco Shop
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GREAT VALUES
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This paradigm, however, keeps us in our own POV,
not the consumer’s, especially at the discovery stage

Apparel > Men’s > Footwear

Apparel > Men’s > Athletic Wear

Collectibles > Clothing > Footwear

10 ebay



This paradigm, however, keeps us in our own POV,
not the consumer’s, especially at the discovery stage
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| jordan 1 red and white sneakers

All Categorie]

LUIREOLER  Accepts Offers  Auction  Buy It Now Condition v Shipping v Local v

11,000+ results for jordan 1 red and w...

NEW Jordan 1Retro High OG Chicago

Men's 10.5 (Lost and Found) Red White...

Brand New - Jordan

Q Save this search

jordan 1 mid White, Black, Gym red.
Pre-Owned - Jordan

Nike Air Jordan 1 Mid Banned Black Red
White 554724-074 Mens and GS New
Brand New

$559.99 $150.00 $99.99 0 $219.99
Buy It Now or Best Offer Buy It Now

+314.95 shipping +314.95 shipping +$14.95 shipping

& Authenticity Guarantee & Authenticity Guarantee @ Authenticity Guarantee

<

NEW Jordan 1Retro High OG Chicago Men's 10.5 (Lost and
Found) Red White 2022
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This challenge with traditional recommenders shows
up in many different contexts of item personalisation

e Upper funnel browsing

e Cross-selling

e Cross-channel personalisation

e Personalised feeds

e Complementary recommendations

e HYPER-PERSONALISATION

12 ebay




Use Case: Customer interest detection for creating a
hyper-personalised upper funnel browsing experience

’ _ - Customer problem statement

e “Let me be inspired with products | never thought exist”.
e “Let me shop my values and interest’.
e “Show me diverse, fun recommendations”.

e 70% of Gen Z's - discovery is the best part of shopping.

13




Use Case: Customer interest detection for creating a
hyper-personalised upper funnel browsing experience

These three listings fall under three different ebay categories:

Athletic shoes Trading Card Singles Basketball-NBA
Nike Lebron 2 Maccabi Men's 2019 Panini Mosaic LeBron LeBron James Lakers Robzilla

Basketball Shoes White/Gold James #8 PSA 10 GEM MINT Limited Edition Serigraph Print

B A

Customer Interest: “Lebron James”
2

——

7 TN

Um

14 ebay




We built an Interest Graph of 63 actions to dynamically
find in real-time customer’s interests as they emerge
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We built an Interest Graph of 63 actions to dynamically
find in real-time customer’s interests as they emerge
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We built an Interest Graph of 63 actions to dynamically
find in real-time customer’s interests as they emerge
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Time Attention Based Behavior Sequence Embedding

Landed on Page Viewed Product Viewed Product Clicked Product Viewed Product Clicked Product Viewed Product
[Homepage] [camera X, Image 1] [camera Y, Image 1] [camera Y, Image 1] [Toy X, Image 2] [Toy X, Image 2] [Toy X, Description]
Landed on Page | Viewed Product | Viewed Product | Clicked Product | Viewed Product |Clicked Product| Viewed Product
[Homepage] [Camera X, Image 1] |[Camera Y, Image 1] | [Camera Y, Image 1]| [Toy X, Image 2] | [Toy X, Image 2] | [Toy X, Description]
Event Sequence Time Seauence
4
| 1

biLSTM

biLSTM

Sequence Embedding Time Embedding

b

Click Stream Embedding

Customer Interest




The Interest Graph approach can be brought to life via
a bi-directional hyper-personalized browse experience

INSERT VIDEO HERE



Questions?
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