@ Wharton AisANALYTICS FOR BUSINESS M SI
University of Pennsvivania — Analytics at Wharton

at the ARF

Xiao Liu, New York University

Livestream Shopping and Dynamic Customer Interactions

MARKETING SCIENCE INSTITUTE #MSIANALYTICS




Introduction Problem Definition and Solution Intuitions Model Results Conclusions

Livestream Shopping and Dynamic Customer Interactions

Xiao Liu

Stern School of Business, New York University

May 2023 @MSI Wharton

1/22




Problem Definition and Solution Intuitions

Industry Background: Livestream Shopping
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Industry Background: Livestream Shopping

Livestream Shopping Platforms
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Industry Background: Livestream Shopping with Discount Coupons
Qn

Dynamic Targeting: Who? How Much Discount? What Sequence?
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Examples of Dynamic Personalized Coupons
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Executive Summary of Questions and Findings

Research Questions

ow can we develop a theoretical framework that incorporates the intertemporal tradeoffs in dynamic
ersonalized pricing and designs a policy that maximizes revenue?

ow can we empirically evaluate the performance?

hat are the gains and what mechanism can explain the gains?
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Executive Summary of Questions and Findings

Research Questions

ow can we develop a theoretical framework that incorporates the intertemporal tradeoffs in dynamic
ersonalized pricing and designs a policy that maximizes revenue?

ow can we empirically evaluate the performance?

hat are the gains and what mechanism can explain the gains?

Takeaways:

‘Batch Deep Reinforcement Learning (BDRL) increases GMV by 63% 1n a field experimen
compared to the status quo (random allocation)

'BDRL 1s 34% more effective than static targeting policies, because it incorporates
intertemporal tradeoffs, especially the reference price effect

‘BDRL 1s 20% more effective than an econometrics model, because 1t mitigates model bias

'Recommend a small discount for more attractive hosts and price skimming over time
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Data

‘Consumers: 1 million
‘Livestreams: 200.6 K

‘Hosts: 119K

‘Coupon receive incidence: 25.9 M
‘Time: 3 months

7122




[ntroduction Model Results Conclusions

Seguence of Events

Sealience of Fvents
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Introduction

Solution Architecture

Pricing Strategy Problem
1 Uniform (Same Price For Everyone) Ignore heterogeneity
2 Personalized Ignore intertemporal tradeoffs

3 Personalized + Dynamic + Model-based Model bias
4 Personalized + Dynamic + Model-free
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Theory of Intertemporal Tradeofts

‘Referenoe Price

> Big discount incentivizes purchase now

> But lowers consumers’ reference price

» Reduces response to unfavorable coupons tomorrow

> Optimal sequence: small discount = big discount (Price skimming)
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Introduction

Theory of Intertemporal Tradeofts

‘Referenoe Price

> Big discount incentivizes purchase now

> But lowers consumers’ reference price

» Reduces response to unfavorable coupons tomorrow

> Optimal sequence: small discount = big discount (Price skimming)

‘State Dependence (Positive) Loyalty

> Small discount to increase profit margin now
> But consumers are not locked in (b/c of switching cost)

» Lower repeated purchase tomorrow
> Optimal sequence: big discount = small discount (Price penetration)
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Theory of Intertemporal Tradeofts

‘Referenoe Price

> Big discount incentivizes purchase now

> But lowers consumers’ reference price

» Reduces response to unfavorable coupons tomorrow

> Optimal sequence: small discount = big discount (Price skimming)

‘State Dependence (Positive) Loyalty

> Small discount to increase profit margin now

> But consumers are not locked in (b/c of switching cost)

» Lower repeated purchase tomorrow

» Optimal sequence: big discount = small discount (Price penetration)

‘State Dependence (Negative) Variety-seeking

> Big discount incentivizes purchase now

> But consumers would like to seek variety

» Lower purchase tomorrow

» Optimal sequence: small discount = small discount
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Solution 4: Model-free Dynamic Personalized
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Introduction Problem Definition and Solution Intuitions

Model Setup: Reinforcement Learning Framework

Reinforcement Learning Framework

Environment
Consumers —
1. churn
2. search
\_ 3. purchase -/
(State, Reward) Action
1. Consumer Revenue Coupon
2. Host
3. Product Discount Level
4. Livestream Threshold Level
~ “\
Agent

Taobao Live Platform
\_ Y,
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Conclusions

State

Categorization of State Variables

Consumer Host Product Livestream

Static*  Demographics, Product Demographics, Category, price, Visit,

preference attractiveness penetration, engagement
retention (comment, like,
etc.)
Dynamic [Recency, frequency,  Frequency of [Recency, [Recency,
monetary value] of sellers visited frequency, frequency] of
Coupons monetary value] webpages visited
received X Coupon of Products
category X Product purchased X
category; Churn Product category

*Static features are defined as those not affected by actions. Static features may come from a stationary distribution instead of being a fixed number.
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Dynamic States Incorporate Intertemporal Tradeoffs

Intertemporal Tradeoffs and Dynamic State Variables

Intertemporal Tradeoffs Dynamic State Variable

Reference Price monetary_coupon
Loyalty/Inertia frequency_product
Variety Seeking frequency_product
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Policy Learning-BCQ

Model Intuition
'Model bias? = Model-free: 0" (S,A) + (1— ) Q(S,A) + a (R+Smax Q (S, A))) LD
— \ A J
oldvalue -
update

‘Curse of dimensionality? = Deep learning: Q(S,A) = Q (S,A;0)
ost of experimentation = Batch 0
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Benchmark

Benchmark Models
Type Model
1 Uniform (Same Price for Everyone) Regression w/o interaction

GBDT; Deep Neural Networks
Orthogonal Random Forest

3 Personalized + Dynamic + Model-based Econometrics
4 Personalized + Dynamic + Model-free BDRL

2 Personalized
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Conclusions

Model Comparison

Model Comparison Using the Doubly Robust Estimator

1. Static 2. Static Personalized 3. Model-based 4. Model-free
Uniform Dynamic Dynamic
Personalized Personalized
A: B: C: D: E: F:
Regression GBDT  DNN ORF Econometrics  Proposed BDRL
GMV 6.57 7.57 6.99 7.51 8.39 9.57
Gain +12% +29% +19% +28% +43% +63%

An increased GMV of $13.1 million (91.8 million RMB) for the consumers in our sample

GBDT: Gradient Boosted Decision Tree
NN: Deep Neural Networks
ORF: Orthogonal Random Forest

DRL: Batch Deep Reinforcement Learning
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Conclusions

Field Experiment

‘2 weeks

’80% Random, 10% Econometrics, 10% BDRL

Field Experiment Result

Model-based

Random Dynamic Model-free Dynamic
Allocation Personalized Personalized (BDRL)
(Econometrics)
GMV 6.98 9.70 11.16
Gain ~ +39% +60%
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Problem Definition and Solution Intuitions

Model

Conclusions

Policy 1:When to Target?
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Coupon Allocation Frequency

Static Policy: GBDT

Discount Level: L ® Discount Level: H
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1 5
N_th Coupon Reception Incidence

Dynamic Policy: BDRL

Discount Level: L mDiscount Level: H

1 5
N_th Coupon Reception Incidence

The dynamic policy gradually increases the high discount level coupons to avoid the reference
price effect
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Policy 2: Who to Target?

Targeting Rule Under BCQ: Host Attractiveness

Less Attractive Hosts More Attractive Hosts
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o (=]
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1000000
1000
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0 0
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Discount Level Discount Level

Better deals for less attractive hosts
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Policy 3: When + Who to Target?

0.7
0.6
205
?C‘j 0.4
§ 0.3 —Low_Spender
'é 0.2 High_Spender
0.1

0
I 3 5 7 9 11 13 15 17 19 21 23 25

N_th Coupon Reception Incidence

Low spenders: More price sensitive, bigger discounts and faster increase
High spenders: Less price sensitive, smaller discounts and slower increase
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How Can You Apply It?

Generalizable Framework, Can Be Applied To

‘Dynamic, high-frequency interventions
‘Customer Lifetime Value Optimization

Model Requirements

‘Individual—level Panel Data

‘Real—time interaction digital infrustructure
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Upcoming Events: MSI

, at the ARF
Webinar:
- 5/9 - Ensembling Experiments to Optimize Interventions Along the Customer

Journey | Yicheng Song, University of Minnesota

Workshop:
- 5/16 - The Customer-Base Audit | Peter Fader, University of Pennsylvania

Workshop:
- 5/23 - Digital Customer Engagement | Wendy Moe, University of Maryland

Book Series Webinar:
- 5/30 - Power and Prediction: The Disruptive Economics of Artificial Intelligence | Avi
Goldfarb, University of Toronto

Webinar:
- 6/27 - Regulating Privacy Online: The Economic Impact of the GDPR | Samuel
Goldberg, Stanford University

In-Person Event:
* Fall 2023 — MSI Accelerator | New York, NY

Register Now at msi.org/2023-calendar-of-events/
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