

Xiao Liu, New York University

Livestream Shopping and Dynamic Customer Interactions

1/22

Livestream Shopping and Dynamic Customer Interactions

Xiao Liu

Stern School of Business, New York University

May 2023 @MSI Wharton

Industry Background: Livestream Shopping

Taobao Live:

Total sales transactions 500 billion

Influencers 2 million

Industries Jewelry, fashion, food

Engagement tool Coupons

Source: http://www.chuangyejia.com/article-12355989.html

https://www.forbes.com/sites/laurenhallanan/2019/03/15/amazon-li ve-is-alibabas-live-streaming-without-the-good-bits/#4512f5bf94ab

Industry Background: Livestream Shopping

Livestream Shopping Platforms

	Taobao	Kuaishou	TikTok	Amazon	Wayfair	Facebook	Google
	淘宝直播	05	TikTok	amazon live	≫ wayfaır	facebook LIVE	Google Shoploop
Start	2016	2018	2018	2019	2019	2018	2020
Source	Taobao	Taobao	Taobao	Amazon	Wayfair	Multiple	Multiple
DAU	30 mil	100 mil	100 mil	~	~	2 bil	~
	Apparel	Deals	Cosmetics	Deals	Furniture	Used	Cosmetics
Product	Cosmetics			Fashion		goods	
	Jewelry			Beauty			

(1) http://pg.jrj.com.cn/acc/Res/CN_RES/INDUS/2019/7/31/8b2ce355-3ae6-4913-9983-3dcb74f af04c.pdf; (2) https://www.retail.dive.com/news/wayfair-to-launch-livestreaming-service-on-way-day/552240/ https://99firms.com/blog/facebook-live-stats/#gref; (3) https://www.theverge.com/2018/12/6/18129201/facebook-live-shopping-mode-test; (4) https://fashionista.com/2017/07/shop-shops-chinese-app

Industry Background: Livestream Shopping with Discount Coupons

Dynamic Targeting: Who? How Much Discount? What Sequence?

Examples of Dynamic Personalized Coupons

Executive Summary of Questions and Findings

Research Questions

How can we develop a theoretical framework that incorporates the intertemporal tradeoffs in dynamic personalized pricing and designs a policy that maximizes revenue?

Plow can we empirically evaluate the performance?

What are the gains and what mechanism can explain the gains?

Takeaways:

Batch Deep Reinforcement Learning (BDRL) increases GMV by 63% in a field experiment compared to the status quo (random allocation)

BDRL is 34% more effective than static targeting policies, because it incorporates intertemporal tradeoffs, especially the reference price effect

BDRL is 20% more effective than an econometrics model, because it mitigates model bias

Recommend a small discount for more attractive hosts and price skimming over time

Liu Livestream

Executive Summary of Questions and Findings

Research Questions

- How can we develop a theoretical framework that incorporates the intertemporal tradeoffs in dynamic personalized pricing and designs a policy that maximizes revenue?
- Plow can we empirically evaluate the performance?
 - What are the gains and what mechanism can explain the gains?

Takeaways:

- Batch Deep Reinforcement Learning (BDRL) increases GMV by 63% in a field experiment compared to the status quo (random allocation)
- BDRL is 34% more effective than static targeting policies, because it incorporates intertemporal tradeoffs, especially the reference price effect
- ■BDRL is 20% more effective than an econometrics model, because it mitigates model bias
- Recommend a small discount for more attractive hosts and price skimming over time

Results

Introduction

- Consumers: 1 million
- Livestreams: 200.6 K
- **M**osts: 11.9 K
- Coupon receive incidence: 25.9 M
- Time: 3 months

Introduction

RLFramework

Liu Livestream 8 / 22

Solution Architecture

Pricing Strategy	Problem
1 Uniform (Same Price For Everyone)	Ignore heterogeneity
2 Personalized	Ignore intertemporal tradeoffs
3 Personalized + Dynamic + Model-based	Model bias
4 Personalized + Dynamic + Model-free	

Theory of Intertemporal Tradeoffs

• Reference Price

- Big discount incentivizes purchase now
- But lowers consumers' reference price
- Reduces response to unfavorable coupons tomorrow
- Optimal sequence: small discount \Rightarrow big discount (Price skimming)

State Dependence (Positive) Loyalty

State Dependence (Negative) Variety-seeking

Theory of Intertemporal Tradeoffs

Reference Price

- Big discount incentivizes purchase now
- But lowers consumers' reference price
- Reduces response to unfavorable coupons tomorrow
- ► Optimal sequence: small discount ⇒ big discount (Price skimming)

State Dependence (Positive) Loyalty

- Small discount to increase profit margin now
- But consumers are not locked in (b/c of switching cost)
- Lower repeated purchase tomorrow
- Optimal sequence: big discount \Rightarrow small discount (Price penetration)

State Dependence (Negative) Variety-seeking

- Big discount incentivizes purchase now
- But consumers would like to seek variety
- Lower purchase tomorrow
- ► Optimal sequence: small discount ⇒ small discount

10 / 22

Theory of Intertemporal Tradeoffs

Reference Price

- Big discount incentivizes purchase now
- But lowers consumers' reference price
- Reduces response to unfavorable coupons tomorrow
- Optimal sequence: small discount \Rightarrow big discount (Price skimming)

State Dependence (Positive) Loyalty

- Small discount to increase profit margin now
- But consumers are not locked in (b/c of switching cost)
- Lower repeated purchase tomorrow
- Optimal sequence: big discount \Rightarrow small discount (Price penetration)

State Dependence (Negative) Variety-seeking

- Big discount incentivizes purchase now
- But consumers would like to seek variety
- Lower purchase tomorrow
- ► Optimal sequence: small discount ⇒ small discount

Solution 4: Model-free Dynamic Personalized

$$\pi^* = \underset{\pi = \{A_{it}\}_{i,t}}{\operatorname{argmax}} E \left[\sum_{i=1}^{l} \sum_{t=0}^{T_i} \delta^t R_{it} (S_{it}, A_{it}) \right]$$

Deep Reinforcement Learning

Source: https://adeshpande3.github.io/Deep-Learning-Research-Re view-Week-2-Reinforcement-Learning

Model Setup: Reinforcement Learning Framework

Reinforcement Learning Framework

State

Categorization of State Variables

Consumer	Host	Product	Livestream
Demographics, Product	Demographics,	Category, price,	Visit,
preference	attractiveness	penetration,	engagement
		retention	(comment, like,
			etc.)
[Recency, frequency,	Frequency of	[Recency,	[Recency,
monetary value] of	sellers visited	frequency,	frequency] of
Coupons		monetary value]	webpages visited
received×Coupon		of Products	
category × Product		purchased ×	
category; Churn		Product category	
	Demographics, Product preference [Recency, frequency, monetary value] of Coupons received × Coupon category × Product	Demographics, Product Demographics, preference attractiveness [Recency, frequency, Frequency of monetary value] of sellers visited Coupons received × Coupon category × Product	Demographics, Product Demographics, Category, price, preference attractiveness penetration, retention [Recency, frequency, Frequency of monetary value] of sellers visited frequency, Coupons monetary value] of Products category × Product purchased ×

^{*}Static features are defined as those not affected by actions. Static features may come from a stationary distribution instead of being a fixed number.

Introduction

Intertemporal Tradeoffs and Dynamic State Variables

Intertemporal Tradeoffs	Dynamic State Variable
Reference Price	monetary_coupon
Loyalty/Inertia	frequency_product
Variety Seeking	frequency_product

Policy Learning-BCQ

Model Intuition

- Curse of dimensionality? \Rightarrow Deep learning: $Q(\mathbf{S}, A) = Q(\mathbf{S}, A; \theta)$
- Cost of experimentation \Rightarrow Batch

Introduction

Benchmark Models

Type	Model	
1 Uniform (Same Price for Everyone)	Regression w/o interaction	
2 Personalized	GBDT; Deep Neural Networks Onthogonal Bandom Forget	
3 Personalized + Dynamic + Model-based	Orthogonal Random Forest Econometrics	
	BDRL	

Model Comparison

Model Comparison Using the Doubly Robust Estimator

	1. Static	2. Static Personalized		3. Model-based	4. Model-free	
	Uniform				Dynamic	Dynamic
					Personalized	Personalized
	A:	B:	C:	D:	E:	F:
	Regression	GBDT	DNN	ORF	Econometrics	Proposed BDRL
GMV	6.57	7.57	6.99	7.51	8.39	9.57
Gain	+12%	+29%	+19%	+28%	+43%	+63%

An increased GMV of \$13.1 million (91.8 million RMB) for the consumers in our sample

GBDT: Gradient Boosted Decision Tree

DNN: Deep Neural Networks

ORF: Orthogonal Random Forest

BDRL: Batch Deep Reinforcement Learning

Field Experiment

2 weeks

80% Random, 10% Econometrics, 10% BDRL

Field Experiment Result

		Model-based	
	Random	Dynamic	Model-free Dynamic
	Allocation	Personalized	Personalized (BDRL)
		(Econometrics)	
GMV	6.98	9.70	11.16
Gain	~	+39%	+60%

Policy 1:When to Target?

The dynamic policy gradually increases the high discount level coupons to avoid the reference price effect

Policy 2: Who to Target?

Targeting Rule Under BCQ: Host Attractiveness

Better deals for less attractive hosts

Policy 3: When + Who to Target?

Low spenders: More price sensitive, bigger discounts and faster increase High spenders: Less price sensitive, smaller discounts and slower increase

Results

How Can You Apply It?

Generalizable Framework, Can Be Applied To

- Dynamic, high-frequency interventions
- Customer Lifetime Value Optimization

Model Requirements

- Individual-level Panel Data
- Real-time interaction digital infrustructure

Lunch with Speakers

MARKETING SCIENCE INSTITUTE #MSIANALYTICS

Upcoming Events:

Webinar:

 5/9 – Ensembling Experiments to Optimize Interventions Along the Customer Journey | Yicheng Song, University of Minnesota

Workshop:

• 5/16 – The Customer-Base Audit | Peter Fader, University of Pennsylvania

Workshop:

• 5/23 – Digital Customer Engagement | Wendy Moe, University of Maryland

Book Series Webinar:

• 5/30 – Power and Prediction: The Disruptive Economics of Artificial Intelligence | Avi Goldfarb, University of Toronto

Webinar:

• 6/27 – Regulating Privacy Online: The Economic Impact of the GDPR | Samuel Goldberg, Stanford University

In-Person Event:

Fall 2023 – MSI Accelerator | New York, NY

Register Now at msi.org/2023-calendar-of-events/