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AI has made quite the splash
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Source: https://openai.com/research/gpt-4

AI has made quite the splash … through successful 
prediction and generation



The improved performance comes at the cost of 
explainability
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Ability to provide a 
qualitative understanding of 
the relationship between the 
input variables and the 
response (Ribeiro et al. 2016)



Why do we care about explainability?

1. Managers to have trust in predictions  deploy model at scale

2. Generalizability/robustness of model in other settings

3. “If your system doesn’t work and you don’t know why it’s quite hard to 
improve it.” – Uber AI researcher

4. Ethical and fairness concerns

Explainability is important for:
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Why do we care about explainability?
Can we classify wolves vs. huskies (breed of dog)?

6Source: Ribeiro et al. (2016)



Incorporate theory to gain explainability
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• Deep learning 
improves accuracy but 
loses explainability

• Theory enables 
explainability

• Ideally without losing 
predictive accuracy

Theory-based 
Deep Learning
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Application: A Theory-Based
Explainable Deep Learning 
Architecture for Music Emotion
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Hortense Fong, Vineet Kumar, K. Sudhir



“Music is the language of emotion”
It can elicit a wide range of emotions

ASPCA Giving Tuesday
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Emotion induced by content impacts ad effectiveness
Where to insert an ad based on content emotion?
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• Content emotion varies 
over time

• Interaction of content 
emotion and ad emotion
impacts ad 
effectiveness 

Where to insert ad?
Ad

Valence
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Sadness
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? ? ? ?
• Billions of videos on 

YouTube
 Need model to 

determine optimal ad 
insertion positions at 
scale

• Music is designed to 
elicit the intended 
emotion in video 
content

 Use music emotion as 
proxy for video emotion



Predicting Emotion from Music
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Input Model Output
Convert raw music 
into spectrogram 

images

Deep learning 
model (CNN)

Predicted emotion 
(valence + arousal) 

evoked by music 

Music theory-
based filters provide

explainability without
reducing performance

Valence

Arousal

Varies over time

Our Contribution



Convolutional neural network (CNN) was designed for 
computer vision

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 12

Feature Learning
Automatically learns features 

of data useful for classification

Classification
Uses learned features to estimate 

probability of each class

Goal of model: Classify vehicle in each image



Deep learning for music uses vision convolution filters

Important musical features rely on non-local information!
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Octaves: 𝑓𝑓0 & 2𝑓𝑓0 Minor second:𝑓𝑓0 & (25/24)𝑓𝑓0

Pleasant / Consonant Jarring / Dissonant



Music Theory Background
Emotion is related to consonance and dissonance
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Consonance: A combination of notes 
that sound pleasant when played together
 Positive valence, low arousal

Dissonance: A combination of notes 
that sound jarring when played together
 Negative valence, high arousal

Fifths
OctavesUnison

We design filters to capture frequency relationships associated with consonance.

Source: Sethares (2005)



Our contribution: Designing theory-based filters from 
physics of sound

Our consonance filters are based on non-contiguous frequency ratios.

C10 = 1,024 x C0 = 16,744.32 Hz

C9 = 512 x C0 = 8,372.16 Hz

…

C2 = 4 x C0 = 65.40 Hz

C1 = 2 x C0 = 32.70 Hz

C0 = 16.35 Hz

Our Contribution

Octaves for pitch class C:

frequency Cn = 2𝑛𝑛𝐶𝐶𝐶
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Explainability: Grad-CAM visual explanation for image 
CNN

Input OutputGrad-CAM Heatmap

Shark

Sharp teeth important 
in classification!

Source: https://medium.com/@stepanulyanin/implementing-grad-cam-in-pytorch-ea0937c31e82

Whale
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Explainability: Why does the model predict what it 
predicts?

Input: mel spectrogram Output: emotion

Valence

Arousal
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Explainability: Our theory-based filters generate 
explainable Grad-CAM heatmaps

Atheoretical Filter Grad-CAM Heatmap Our Theory-Based Filter Grad-CAM Heatmap

V

A

Brightness identifies points of consonance 18



In addition to explainable, our model is more 
parsimonious

Number of parameters

50,900~5,000,000
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Atheoretical DL: CNN + Square Filter
(Chowdhury et al. 2019)

Theory-based DL: CNN + Consonance Filter 
(Our model)



Ad Insertion Application: YouTube Mid-Roll Ads
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? ? ? ?

1. Ad skip

ASPCA

2. Brand recall



Use Model for Emotion-based Ad Position

Our proposed deep learning model 
(MusicEmoCNN):
• works in real-time 
• is scalable
• is explainable
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What is theory?

• Theories from natural science
• Physics of sound
• Human vision

• Theories from social science
• Music theory
• Prototype theory

• Managerial knowledge
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Thank you! 
hf2462@gsb.columbia.edu
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